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1 Introduction 

Recently (2+1)-dimensional field theories have received renewed attention as models of sys- 

tems of statistical mechanics [l]. In particular, the O(3) nonlinear d model has been used to 

describe the long wavelength limit of spin waves of two dimensional quantum antiferromag- 

nets [Z] and in modelling superfluid 3He films [3], [4]. M ore recently, the nonlinear Q model 

coupled to fermions has also been widely studied as a field theoretic realization of a system 

of interacting spin Waves and holons, used to describe the behaviour of high Z’, supercon- 

ducting materials [5], [6]. While the relevance of this model to high T, superconductivity is 

still under study, the nonlinear v model by itself has interesting physical properties. The 

model is defined by the action 

so(+) = ; 1 d% a,&,&#~, 

with 4. a triplet of scalar fields (6, $3). Th’ 1s is an example of a nonlinear classical field theory 

with topologically nontrivial solutions [7]. Topological s&tons occur whenever the space 

of time independent, finite energy, field configurations is divided kto disconnected sectors 

separated from each other by infinite energy barriers. Such energy barriers can result, for 

example, from an infinite energy density within a finite region in space. In particular, in the 

nonlinear u model, any region in space where 4” # vz has an infinite energy density. Hence, 

a finite energy field configuration is a map from the coordinate space into the space of field 

configurations satisfying the constraint 4s = vs, which is S”. Compactifying the coordinate 

space R’ to 5” by requiring that the fields approach a unique value at spatial infinity, each 

finite energy configuration may be characterized by its winding number, i.e., the number of 

times that the configuration d( ) + wraps around the space of finite energy configurations 9. 

Since Q(&) = 2, this implies the existence of solitons of different winding numbers. The 
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expression for the winding number (topological charge) is 

1 
4= Qt,.) = ~ 8Tu3 %jGbc 

J 
d2z4.ai+baj4c. (2) 

Furthermore, a topological term associated with the nontriviality of the homotopy classes 

of ns(&) = 2 can be included in the action, S = So + B H. The so-called Hopf term 

H = TT 
/ 

d3mMuAjpav~jA , 

where j, is the topological current expression leading to es.(z), breaks P and T invariance. 

Its appearance may induce nontrivial spin and statistics for the solitons, depending on the 

parameter 0. In our discussion, we do not introduce a Hopf term in the tree-level action. 

Moreover, the coupling of the scalars to fermions will be explicitly parity invariant. In the 

absence of parity violating terms in the original Lagrangian, no parity violating Hopf term 

is induced through radiative corrections[8]-[12]. 

In even dimensional space-times, the fermionic charge induced by scalar soliton back- 

grounds has been extensively studied in the literature [13]-[16]. The adiabatic method de- 

veloped by Goldstone and Wilczek [17] p rovides a reliable estimate of the induced fermion 

number for background configurations characterized by small spatial gradients [lS]. The 

essence of the method is to build up the final desired configuration starting from the initial 

vacuum, by performing slow changes of the fields in space and time. In 2+1 dimensions, 

in exact analogy with even dimensional systems, the induced fermion current can be evil- 

uated in powers of derivatives of the background field [a], 1191. Keeping the lowest order 

nonvanishing term in this expansion one obtains the induced charge of the final state in the 

adiabatic limit, Qod.. In this limit of the gradient expansion, the fermion number induced by 

a soliton background configuration, Q;d., is found to be identical to its topological charge, 

Q;,,d. = Qod. = Qc,.l. The ground state charge of the system, however, will differ from 

the induced charge depending on the number of zero energy level crossings n+(n-) in the 

'A further analysis in section 3 will support this equality. 
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positive (negative) direction of the energy axis that occur during the adiabatic evolution, 

QGS = Qind. - (n+ - n-) (4) 

The ground state charge is related to the spectral asymmetry, v[xl, (i.e., the C-function 

regularization of the difference between the number of positive and negativeeigenvalues of the 

Dirac Hamiltonian H) by the usual expression, Qcs = -~[~1/2 ‘. The spectral asymmetry 

may be written as a sum of its continuous and discontinuous parts, TI[HI = qfHl + 2(n+ -n-). 

During the adiabatic evolution the induced charge measures the continuous change of the 

fermion number operator. Its discontinuous changes are those due to the spectral flow 

contributions, which are overlooked by the adiabatic procedure. [20]-[24]. 

In this work, we study the fermionic charge induced through vacuum polarization effects 

by topologically nontrivial scalar configurations in the O(3) nonlinear (r model in 2+1 di- 

mensions. In particular, we will analyse the conditions under which the ground state fermion 

charge of the soliton is determined wholly by its topology. In the (3+1)-dimensional O(4) Q 

model, the appearance of zero energy modes as a function of the relative magnitudes of the 

fermion’s Compton wavelength and the width of the scalar background, has been extensively 

studied [la], [25]-[27]. It has been shown that a soliton carries the fermion number of any 

fermion which is sufficiently heavy compared with the typical mass scale of the topological 

configuration. In the (2+1)-dimensional case, we expect a qualitatively similar result, so 

that the ground state charge of the system may be identified with the topological charge of 

the soliton for a fixed range of values for the soliton width, measured in units of the inverse 

of the fermion mass. 

In section 2 we introduce the O(3) nonlinear c model coupled to an isodoublet of two 

component fermions through a Yukawa-type interaction. If the scalar field acquires a vev, 

< 4s >= z), the fermion acquires mass, lrn,l = Ivgul, and gar, therefore, defines a characteristic 

mass scale for the fermion. We will construct the intermediate scalar configuration that 

will interpolate between the initial and final soliton states. We then write down the energy 

‘The validity of this expression is restricted to the case when no zero modes of the Hamiltonian appear. 
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eigenvalue equations for the fermion in a general scalar background configuration, expanding 

the fermion wave function in a basis of eigenstates of energy and “grand” momentum, Ms = 

I3 + js, the sum of the third components of weak isospin and angular momentum. In section 

3, we show that a zero energy mode, if it exists, must appear in the zero “grand” momentum 

orbital. To that purpose we consider the adiabatic evolution of the background into the 

limiting case of an infinitely thin final soliton. We then show analytically that at the time 

of appearance of the zero energy mode the ground state has fractional fermionic charge, 

Qcs = l/2. In section 4, we will use an iterative method to find a numerical solution to 

the eigenvalue equations for the specific interpolating backgrounds constructed in section 2. 

Based on the results obtained in the previous section, we need only consider the eigenvalue 

equations in the A43 = 0 orbital. We demonstrate the existence of a zero energy mode in the 

lowest “grand” momentum orbital for different intermediate configurations and obtain the 

ground state charge of the soliton. Section 5 contains our conclusions. 

2 Energy Eigenvalue Equations for the Fermion in a 
Scalar Background 

Let us consider the (2+1)-dimensional O(3) non-linear g model [7] coupled to an isodoublet, 

4, of two component fermions, treating the scalar triplet 4. as a background configuration, 

L = gwav. + Z?J;a,yy - g,q$.Ta+. 

With the boundary condition at spatial infinity chosen as C$ = (0,0,-l), the soliton with 

unit winding number has the form 

4 = ?J ( h(T)+, -h(v)) ) ) (‘5) 

where 1: = F/r and fi(~) goes monotonically from -1 at T = 0 to 1 at T + 0~) and fi(v) 5 0 

vanishes at T + O,cu, but is otherwise negative. We need a parametrization of this expression 

that allows us to build up the soliton adiabatically from the trivial vacuum state. Notice 
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that since we are working in the nonlinear limit of the c model, intermediate configurations 

with boundary conditions at spatial infinity different from those of the soliton are required 

in order to interpolate between the initial and final states. Following [27], we choose the 

interpolating configurations 

43 = 21 cos[h(t)(s - arccos fi(?))] , 

d;r,t) = (q&,&) = vsin[h(t) arcsinfZ(T)]+ T I P. , 

= --v sin[h(t)(x + arcsin f2(r))]l: 7 2 P. , 

where p, is the soliton width, with the explicit expression for the radial functions, 

(7) 

fi(~) = 1 - 2exp[-r* ln(2)/pt] 

fi(~) = -2 1 - exp[-r* ln(2)/p:] X exp[--r’ln(2)/2p:] , (8) 

h(t) being a function which varies slowly and monotonically from 0 to 1 and arcsinfi and 

arccos fi taking values in the intervals [-r/2, x/2] and [0, ~1, respectively. The configuration 

(7) gives a soliton of winding number unity at h(t) = 1. 

The expression for the adiabatic current has been calculated by various authors [19] [8] 

using the gradient expansion, 

In the adiabatic limit of the gradient expansion, for positive gy, the fermion number induced 

by a soliton background is found to be identical to the topological charge of the soliton. For 

gy c 0, the sign of the Yukawa coupling changes and so does the fermionic charge. In the 

following we will assume a positive value of gv. 

The expression for the fermionic current, eq.(9), becomes ill-defined whenever the scalar 

field configuration vanishes. In the linear limit of the Q model the change in topological 

charge could also have been achieved through an intermediate configuration which allows no 
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fermion flux at spatial infinity (i.e. the scalar field approaches a unique value at spatial infin- 

ity during the evolving procedure), but vanishes at some point in space-time. In the context 

of this work, the nonlinear constraint, 141 = u, precludes such intermediate configurations. 

No singularity in the fermionic current expression will appear for the interpolating back- 

ground configuration given by eq.(7). Therefore the adiabatic current, eq.(9), is a reliable 

expression for the induced fermionic current in this background and Qind = Qod [24], [27], 

[28]. Moreover, from eqs. (2) and (9), we have Q-d. = Qt.+, so that the induced fermionic 

charge for the final soliton configuration, eq. (7), reads Q;“d. = 1. To compute the ground 

state charge of the soliton we must analyse the existence of zero energy level crossings. 

In order to look for zero modes in the energy spectrum of the fermion it is useful to write 

down the Dirac equation in the background of a general scalar triplet 

tap-r@4 - gu4,1z$ = 0. (10) 

Our conventions for the y matrices in 2+1 dimensions are: 7” = Ss and -y’ = tS’, i=1,2, 

obeying the Clifford algebra [TV, ~“1 = 2gp” and 7’~” = gfi” - zYyxy~. S,, and I,, a=i,3, are 

the Pauli matrices o, in the Dirac and weak isospin spaces, respectively. Eq. (10) becomes, 

ElCt = -&a< (&$) + 9p.Z (&$J) (11) 

Here, we have defined new variables in terms of the fermion mass scale, rnf = vgu, given by 

E --t Elm,, ~5 = +int and p = p.mt. We have also resealed the fields, (ps = &/v , and 

(0; = dii/U. 

Since (03 = ps(r) and ‘p; = P(T)+; we observe that the “grand” momentum operator, 

defined by Ms = js + 13, where js = -a& + 2 is the ordinary angular momentum and 

13 = + is the isospin, commutes with the Hamiltonian, Eq. (11). Therefore, we look for 

solutions that are simultaneous eigenstates of energy and “grand” momentum, of the form 

$(,) = exp(tOm) I 
1, 
[. 

91(z)exp(-4 

sdz) 1 
d+) 
d=) exp( 26 ) 1 1 

(12) 
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where M&J(,) = m$,), i = (cost?, sinf?) and I = IZ[. With this Ansatz for the fermion, eq. 

(11) reduces to a set of first-order, coupled, differential equations involving the functions gl, 

gar gs and 94: 

a .a = ;sg - ws + (E - (os) g1 

a .a = -;a - ‘pa - (E - (03) gr 

a SC71 = - U+m) 

a zQ4 = - 
(1Lz) 

g1-+w-(E+jDx)gz 

z 
g4 - w1+ (E + iDx) ga (13) 

It is difficult to obtain an analytical solution of eq.(13) except in some limiting cases 

of the scalar background configuration. For the rest of our discussion in this section, we 

restrict ourselves to a consideration of the lowest “grand” momentum orbital, M3 = 0. This 

choice will be justified in the next section. Using analytic arguments, we will show there 

that during the evolution of a narrow soliton of winding number unity a zero-energy mode, 

if it exists, must appear in the zero “grand” momentum orbital. Moreover, we will show 

that zero energy modes cannot exist for sufficiently wide solitons. 

Therefore, consider the eigenvalue equations, eq.(13), in the case m = 0. We observe 

that defining g1 = ga and g2 = -g3 in the proposed solution for the fermion field, the set of 

four coupled equations reduces to 

a XQZ = wz+(E-a)gl 

a 291 = - i+, gl-(E+m)ga ( > (14) 

Note that there exists another straightforward possibility, which is to define g; E g1 = -gr 

and g; E ga = g3 . In this case, the coupled equations reduce to 

a l = 
da -w; + (E - WI s: 

a * = - 
.91 

( > 

A-P g;-(E+PS)g; (15) 
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However, these equations can be obtained from the previous set through the replacement 

E --t -E, (03 --t -(~a, up -+ -p and identifying (gl,gz) in Eq. (14) with (-g;,g;) in Eq. 

(15). Recall that in 2+1 dimensions a simultaneous change in the signs of ‘p3 and p yields 

a change in sign of the topological charge. This implies that if a solution exists, for one of 

the sets of coupled equations, in the background of a soliton with winding number plus one, 

then a solution with opposite energy will exist for the other set, for a background s&ton of 

topological charge -minus one. 

Thus, in the zero grand momentum orbital the initial set of four coupled equations reduces 

to a pair of two coupled equations, which will be solved numerically in section 4. 

3 Zero Energy Modes in an Infinitely Narrow Soliton 
Background 

We digress to argue, that if a zero energy mode exists, it must appear in the lowest “grand” 

momentum orbital, with m = 0. Th e argument is similar in spirit to that given for the 

O(4) model in four dimensions in ref. [26]. From (lo), a normalizable zero energy mode is 

a solution to the equation 

zriai+ = g,+b.T=+. (16) 

In order to show the absence of zero energy modes for sufficiently wide solitons, it is con- 

venient to define the field CT(+), which b 1 e ongs to the fundamental representation of SU(2), 

and such that 4.P = UPU’. Once the field U is rotated away, eq.( 16) reads 

z-j (8; - iA;) x - gJ3x = o (17) 

where Ai = zlJtL$lJ and x = Ut$. Th e characteristic energy scale of the gauge field Ai is 

given by l/p.. Hence, the perturbations of the free Dirac spectrum will be characterized by 

l/p., and no solution to eq.(17) will exist whenever gu >> l/p,. 
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Multiplying eq.( 16) by !T3, and using the relation P7” = 6,. + zi*7*, we get 

dai (TV) = 2gv~a2~b7b~ + gy43+ 

Multiplying (18) on the left by $‘, and its adjoint on the right by $J,, and adding the equations 

gives 

4 ($+-?734) = gy4+w (19) 

Integrating eq.(19) in space, and assuming the normalizability of the zero energy mode, we 

get the condition 

I 
d’z~++$3(T,t) = 0 (20) 

From the analysis presented above, it follows that there exists EL critical value of the s&ton 

width above which zero energy modes cannot exist. Furthermore, as long as the soliton width 

is much smaller than l/g,, for establishing the existence of a zero energy level crossing the 

ezaet value of p, is not crucial. Since s&ton configurations of small width differ from each 

other only in a small volume, this small difference should not affect the existence of solutions 

[26]. For simplicity, we consider the limiting case p, = 0. The h(t) = 1 s&ton background 

is then equivalent to the v~cuun configuration and, consequently, its ground state fermion 

number vanishes. The induced fern&n number, as given by the adiabatic method, is equal 

to the soliton winding number. One zero energy level crossing must appear in order to get 

consistency between the induced and the ground state fermion numbers. From eq.(20) it is 

apparent that the zero mode must appear at the time to for which &,(~,to) = 0. But eq.(7) 

tells us that &(~,t)]~.=o = vcos[h(t)n], so that h(to) = l/2 and 4(+,t,,)lp,=0 = --2). 

Consider the equations (13) in the background of the interpolating scalar field from the 

vacuum to the step soliton final state, at the time t O. For p, = 0, t = to and E = 0, eqs.(l3) 

decouple into a pair of coupled equations 

a .g2= me+g3 

ang3= -ie+g 1 
E (21) 
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and 

a 91 91 .!a= -;-my+g, 

a +a = -~+m~+g, (22) 

Eqs. (21) yield the following second order differential equations for g*(z) and g3(z): 

a:g, = 53 1 1 + 
m(m - 1) 

x2 1 
azg, = g3 

1 
I + “(“,1’ ‘) 1 

Analogously, decoupling the first order equations in eq.(22), we obtain 

327, = -2a,g, +g4 I+ + 1 
m(m - 1) +~ 

I 

afg, = +xgl + g1 I + 
1 

m(m + 1) 
xf 1 

(23) 

(24) 

The solutions to these differential equations are well-known. They are modified Bessel func- 

tions of fractional order[29], and we write them down for completeness. Explicitly, 

gl(x) = AZd”Cyl(~z) , 

gs(t) = A&‘*&,(m) , “3=hnm+~ 
I I 2 ’ 

gl(x) = A/‘zC,(zt) 
1 

, y=+ m+- =v3, 
I I 2 

gd(+) = A&“*C,,(m) , 
1 

IQ=& m-- =y, 
I I 2 (25) 

where the Ai are normalization constants, and the C(z)“; are the cylinder functions of order 

v;, denoting any one of the Bessel functions of first, second or third kind, z(z), Y(z), P(z) 

or H’(z), respectively, or, any linear combination of these. (Recall that the Bessel functions 

of pure imaginary argument are expressed in terms of the modified Bessel functions K,(z) 

and I,(z), of real argument z.) 
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Now, a normalizable solution must satisfy the bound, ]g;(z)i < l/r, both when z + 0, 

and when z ---f 00. For half integer orders, Iyl(z) grows exponentially as z + 00 and 

hence, cannot give a normalizable solution. The functions KyI(z) are well-behaved at spatial 

infinity. However, z-~/~K,(z) 2 l/ z near the origin for all half integer orders. Consequently 

no normalizable solutions exist for gl(z) and gd(a). For gz(z) and g3(z), there is a unique 

solution well behaved at both limits. It is given by the function z~/~K~,~(z) (notice that 

K,,,(z) = K-,,z(r)), and corresponds to zero “grand” angular momentum, M3 = 0. 

In conclusion, for an infinitely narrow soliton only one norm&able solution exists. It 

has the properties: 

n(z) = 94(x) = 0, Mz = 0 

id+) = dr) = Az~“&,~(z) . (26) 

One can readily prove that at the time to and in the scalar background with p, = 0, there 

is a symmetry in the Hamiltonian H,, for the zero grand momentum orbital, which gives a 

one to one correspondence between states of positive and negative energy. Explicitly, one 

finds that for each solution tiT = (hexp(--4 , 921 , 193 , ~~=P(zO)I) of -=rgy E, there 

is a solution lLT = ([-glexp(-86’) , gz] , [gz , -gbexp(ze)]) of energy -E. The spectral 

asymmetry therefore vanishes, ~1~~~1 = 0. However, since we have proven the existence of a 

zero energy mode in this background, the ground state charge at time to does not vanish. 

The correct expression for the ground state charge, after taking into account its degeneracy 

due to the existence of zero modes of the Hamiltonian H,,, reads 

QGS = -F - ; (N;.“,‘=b - Nfzmo) , (27) 

with NC”‘. (Occ’) being the number of zero energy modes at time to that are empty or occupied, toB=o 

respectively. Therefore, the ground state charge of the scalar field at t = t,, and for p, = 0 

is Qcs = &l/2. 

These results are consistent with the predictions of the adiabatic method. In fact, at 

t = to, Qad. = Q;,,d. = l/2. The value QGS = l/2 can be obtained by considering the zero 

12 



energy mode to be occupied, in which case it must be counted as part of the system’s ground 

state and the induced charge is, consequently, equal to the ground state charge. If the zero 

energy mode is empty, instead, the ground state charge differs by one unit from the induced 

charge. Thus, &es = -l/2. 

4 Ground State Charge of the Soliton 

We now use a numerical method to identify fermionic zero energy level crossings in the scalar 

background configuration given by eq.(7). I n order to solve the eigenvalue equations, eqs. 

(14)-(15), we use a variable order, variable step, Adams technique [30] and the iterative 

method proposed in reference [31]. We compute the energy eigenvalue of the m = 0 orbital, 

as a function of the soliton width p,, as the scalar field evolves adiabatically from the vacuum 

to the soliton. 

In Fig.1, we plot the energy eigenvalue of eqs. (14) as a function of h(t), for fixed values 

of p. There is a critical value, p = p., above which no zero energy level crossings develop. 

This critical value, pc = 1, is the value of p for which a zero energy mode exists in the final 

state, h(t) = 1. We have also computed the energy eigenvalues for eq.(15), where no zero 

energy level crossing has been found. 

As we have explained in section 2, within the framework of the nonlinear LT model the 

fermionic charge induced by the soliton background is identical to its topological number. 

Quite generally, in the presence of spectral flow, the ground state charge is instead given by 

eq. (4). From Fig.1, we see th a t no level crossings occur for p > p., while a single zero energy 

level crossing in the positive direction of the energy axis occurs before the evolution into the 

final state, h(t) = 1, for any p < p.. Since the induced charge of the soliton is Q;d = n = 1, 

using eq. (4) we obtain 

QGS=Q;CI=O fm p<pc 

Qcs = Qind = 1 for p > pc. (28) 
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We conclude that the fermionic charge is identical to the topological charge for any p = 

P.mf > PC. In other words, whenever ml > l/p,. 

It is instructive to plot the fermion energy as a function of p, for fixed h(t), as was done 

in Fig. 2. Let pE=O(t) be the value of p for which a zero energy level crossing occurs for 

some particular h(t), thus pE=O(h(t) = 1) = p. = 1. We observe that for any value of h(t) 

the m = 0 orbital has positive energy whenever p < pEcO(t). Therefore, in the ground state 

these levels must be empty. On the contrary, for p > pE:=o(t) these levels have negative 

energy and the m = 0 orbital must be filled in the ground state. Since each curve in Fig. 

2 is at a fixed h(t), there is a fixed induced charge for each curve. Let us denote this fixed 

charge as Q;,,d. = p(t), with P(t) varying from 0 to 1, as h(t) varies in the same way. From 

Fig. 1 we know that for p > pE=O(t) the ground state charge coincides with the induced 

charge for any interpolating background. Since the fermion number is decreased by one unit 

whenever a single level crossing in the positive direction of the energy axis occurs, we see 

that Qcs = p(t) - 1 whenever p < pEcO(t). 

As in the previous section, at p = pE=,,(t), the ground state is degenerate. If the zero 

energy mode is occupied, and is therefore counted as part of the system’s ground state, the 

ground state charge is equal to the induced charge, QGS = p(t). If, instead, it is empty, the 

ground state charge will be p(t) - 1. Ob serve that these two values coincide with the two 

different values of the ground state charge obtained when taking the limit p -+ pE=O(t), for 

values of p greater than or lower than p,&t), respectively. In particular, the ground state 

charge of the final soliton at p = p. may be 0 or 1. 

5 Conclusions 

In this work, we studied the vacuum polarizations effects induced by nontrivial topological 

configurations in the O(3) nonlinear o model in 2+1 dimensions. In particular, we analyse 

the conditions under which the ground state fermion number of the soliton is given by the 
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winding number of the topological configuration. We demonstrated that when the s&ton is 

adiabatically constructed from the vacuum configuration, zero energy modes can appear in 

the fermionic energy spectrum. The existence of zero energy level crossings depends on the 

relative magnitudes of the fermion mass scale, mf, and the inverse of the s&ton width, l/p,. 

We found a single energy level crossing for CL narrow soliton of winding number unity, but 

no spectral flow contributions appear for a wide s&ton. The above implies that the s&ton 

carries the fermion number of any sufficiently heavy fermion. 

An additional result of our analysis is the existence of states with fractional fermion 

number, Qcs = &l/2. This was proved through the cancellation of the fermi&c spectral 

asymmetry and the existence of a single zero energy fermion mode in a given scalar back- 

ground. Then, we showed that these values are consistent with the ones obtained by formal 

considerations based on the adiabatic technique. 

It would be interesting to study the consequences of including an explicit odd parity mass 

term for the fermions. In a future work, we intend to analyse the relationship of the ground 

state fermion charge and the topological charge of the soliton for this case. 
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FIGURE CAPTIONS 

Figure 1: Fermion energy for M3 = 0 as a function of the evolving backgrounds, for 

different values of the size parameter p = mt~,. The full line corresponds to the critical 

value p = 1 N pc for which a zero mode exists at h(t) = 1. 

Figure 2 : Fermion energy for Ma = 0 as a function of the size parameter p, Different 

curves correspond to different scalar backgrounds labelled by the evolution parameter, h(t). 

The energy eigenvalues for a soliton background of winding number unity (h(t) = 1 ) are 

plotted as a full line. 
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